External validation of two prediction tools for patients at risk for recurrent Clostridioides difficile infection

Author:

van Rossen Tessel M.1ORCID,van Dijk Laura J.2,Heymans Martijn W.3,Dekkers Olaf M.4,Vandenbroucke-Grauls Christina M. J. E.5,van Beurden Yvette H.2

Affiliation:

1. Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam UMC location VUmc, PK 2X132, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands

2. Amsterdam UMC, Vrije Universiteit Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam, The Netherlands

3. Amsterdam UMC, Vrije Universiteit Amsterdam, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands

4. Leiden University Medical Center, Clinical Epidemiology, Leiden, The Netherlands

5. Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands

Abstract

Background: One in four patients with primary Clostridioides difficile infection (CDI) develops recurrent CDI (rCDI). With every recurrence, the chance of a subsequent CDI episode increases. Early identification of patients at risk for rCDI might help doctors to guide treatment. The aim of this study was to externally validate published clinical prediction tools for rCDI. Methods: The validation cohort consisted of 129 patients, diagnosed with CDI between 2018 and 2020. rCDI risk scores were calculated for each individual patient in the validation cohort using the scoring tools described in the derivation studies. Per score value, we compared the average predicted risk of rCDI with the observed number of rCDI cases. Discrimination was assessed by calculating the area under the receiver operating characteristic curve (AUC). Results: Two prediction tools were selected for validation (Cobo 2018 and Larrainzar-Coghen 2016). The two derivation studies used different definitions for rCDI. Using Cobo’s definition, rCDI occurred in 34 patients (26%) of the validation cohort: using the definition of Larrainzar-Coghen, we observed 19 recurrences (15%). The performance of both prediction tools was poor when applied to our validation cohort. The estimated AUC was 0.43 [95% confidence interval (CI); 0.32–0.54] for Cobo’s tool and 0.42 (95% CI; 0.28–0.56) for Larrainzar-Coghen’s tool. Conclusion: Performance of both prediction tools was disappointing in the external validation cohort. Currently identified clinical risk factors may not be sufficient for accurate prediction of rCDI.

Publisher

SAGE Publications

Subject

Gastroenterology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3