Dental Amalgam: the Materials

Author:

Marshall S.J.1,Marshall G.W.1

Affiliation:

1. Department of Restorative Dentistry University of California San Francisco, California 94143-0758

Abstract

The goal of this presentation is to describe the material as it is used clinically, explain why small quantities of Hg can be released, and suggest ideas for amalgams that do not release mercury. A set amalgam is a dynamic material that undergoes many microstructural changes during clinical use, related to both the elevated temperature and corrosion-prone environment in the mouth and mechanical forces applied to the restoration. Amalgams can be divided roughly into two groups by their copper content: low Cu (traditional) and high Cu. High-Cu amalgams generally perform better clinically, but all amalgams corrode to some extent in the mouth. Some corrosion is deemed to be a positive factor, because corrosion product deposition reduces leakage at the margins of restorations; that is, the restorations are partly self-sealing. One of the reasons cited for the improved clinical performance of high-Cu amalgams over low-Cu amalgams is that the corrosion-prone phase, γ 2, is nearly eliminated in high-Cu amalgams. Future research should involve improvements in the clinical performance of dental amalgams, studies of the mercury release from various types of amalgams and the toxic potential of this exposure, and the development of new amalgam systems that reduce the mercury exposure. Although the longevity of modern amalgams is impressive, it is important for their stability to be increased both clinically and microstructurally. An amalgam should be developed with a stable microstructure that, once set, would not change during clinical use. Microstructural changes lead to clinical deterioration. A stable system would not corrode, and the matrix transformation γ 1 to β1 would be prohibited. The latter effect could be achieved by stabilization of the γ1 phase or development of a system that would form the stable β1 phase during amalgamation. Such a system would simultaneously improve clinical performance and reduce the potential for biological side-effects from its deterioration. Studies of the potential for Hg release should be conducted with proper consideration of the microstructures of amalgam systems and alterations in the structures induced by clinical use. Careful studies are needed of the toxic potential from exposure to these materials as they are used clinically.

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3