In Vivo Bone Response to Biomechanical Loading at the Bone/Dental-Implant Interface

Author:

Brunski John B.1

Affiliation:

1. Department of Biomedical Engineering Room 7040, Jonsson Engineering Center Rensselaer Polytechnic Institute 110 8th Street Troy, New York 12180-3590

Abstract

Since dental implants must withstand relatively large forces and moments in function, a better understanding of in vivo bone response to loading would aid implant design. The following topics are essential in this problem. (1) Theoretical models and experimental data are available for understanding implant loading as an aid to case planning. (2) At least for several months after surgery, bone healing in gaps between implant and bone as well as in pre-existing damaged bone will determine interface structure and properties. The ongoing healing creates a complicated environment. (3) Recent studies reveal that an interfacial cement line exists between the implant surface and bone for titanium and hydroxyapatite (HA). Since cement lines in normal bone have been identified as weak interfaces, a cement line at a bone-biomaterial interface may also be a weak point. Indeed, data on interfacial shear and tensile "bond" strengths are consistent with this idea. (4) Excessive interfacial micromotion early after implantation interferes with local bone healing and predisposes to a fibrous tissue interface instead of osseointegration. (5) Large strains can damage bone. For implants that have healed in situ for several months before being loaded, data support the hypothesis that interfacial overload occurs if the strains are excessive in interfacial bone. While bone "adaptation" to loading is a long-standing concept in bone physiology, researchers may sometimes be too willing to accept this paradigm as an exclusive explanation of in vivo tissue responses during experiments, while overlooking confounding variables, alternative (non-mechanical) explanations, and the possibility that different types of bone ( e.g., woven bone, Haversian bone, plexiform bone) may have different sensitivities to loading under healing vs. quiescent conditions.

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3