Enamel Matrix Derivative Promotes Reparative Processes in the Dental Pulp

Author:

Nakamura Y.1,Hammarström L.2,Lundberg E.3,Ekdahl H.3,Matsumoto K.1,Gestrelius S.3,Lyngstadaas S.P.4

Affiliation:

1. Department of Endodontics, School of Dentistry, Showa University, 2-1-1, Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan

2. Center for Oral Biology, School of Dentistry, Karolinska Institutet, PO Box 4064, S-14 104 Huddinge, Sweden

3. Biora AB, Medeon Science Park, Malmö, S-205 12, Malmö, Sweden

4. Biora AB, Medeon Science Park, Malmö, S-205 12, Malmö, Sweden, Clinical Research Laboratory, Faculty of Dentistry, University of Oslo, PO Box 1109, Blindern, N-0317 Oslo, Norway,

Abstract

During odontogenesis, amelogenins from the preameloblasts are translocated to differentiating odontoblasts in the dental papilla, suggesting that amelogenins may be associated with odontoblast changes during development. In the present study, we have explored the effects of enamel matrix derivative (EMD) on the healing of a pulpal wound. Coronal pulp tissue of permanent maxillary premolars of miniature swine were exposed through buccal class V cavities. The exposed pulp was capped with EMD. The contralateral teeth served as controls and were capped with a calcium hydroxide paste (Dycal®). The cavities were sealed with glass-ionomer cement. After 2 and 4 weeks, the histology of the teeth was analyzed. In the EMD-treated teeth, large amounts of newly formed dentin-like hard tissue with associated formative cells outlined the pulpal wound separating the cavity area from the remaining pulp tissue. Inflammatory cells were present in the wound area but not subjacent to the newly formed hard tissue. Morphometric analysis showed that the amount of hard tissue formed in EMD-treated teeth was more than twice that of the calcium-hydroxide-treated control teeth (p < 0.001), suggesting that EMD is capable of promoting reparative processes in the wounded pulp more strongly than is calcium hydroxide.

Publisher

SAGE Publications

Subject

General Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3