Pulp-capping with Recombinant Human Insulin- like Growth Factor I (rhIGF-I) in Rat Molars

Author:

Lovschall H.1,Fejerskov O.2,Flyvbjerg A.3

Affiliation:

1. Department of Dental Pathology, Operative Dentistry and Endodontics, Royal Dental College, Faculty of Health Sciences, University of Aarhus, Vennelyst Boulevard 9, DK-8000 Aarhus C, Denmark,

2. Department of Dental Pathology, Operative Dentistry and Endodontics, Royal Dental College, Faculty of Health Sciences, University of Aarhus, Vennelyst Boulevard 9, DK-8000 Aarhus C, Denmark

3. Medical Research Lab. M, Diabetes and Endocrinology, Aarhus University, Aarhus, Denmark

Abstract

The aim of this study was to explore pulp healing and reparative dentinogenesis following pulp-capping by using recombinant human insulin-like growth factor I (rhIGF-I). Exposures were made through the mesial pulp horn in first upper molars in two-month-old Wistar rats. The pulp was covered with one dose of sterile 4% methylcellulose gel containing either 400 ng rhIGF-I or saline in contralateral controls. The exposure site was closed with sterile Teflon membrane, and the cavity was filled with IRM cement. Additional molars were capped with Dycal as controls. After 3, 7, or 28 days, animals were anesthetized and fixed by intravascular glutaraldehyde perfusion. Molars were decalcified and processsed for histological analysis and cut with membrane and residual methacrylate from IRM in situ. Only specimens with acceptable pulp sealing according to blinded microscopy control were included. On day 3, identical inflammatory responses in the upper pulp were observed in molars with rhIGF-I gel or control gel. On day 7, granulation tissue ingrowth had partly replaced inflammatory infiltration in both groups. After 28 days, complete dentin bridging and tubular dentin formation were observed more frequently and closer to the test substance containing rhIGF-I. The reparative dentin response to capping with rhIGF-I was similar to that after the use of Dycal. In conclusion, microscopic control of membrane sealing in situ gives valid information on the more subtle pulp effects of growth factors. The observations suggest that pulp-capping of rat molars by means of rhIGF-I enhances reparative dentinogenesis in comparison with vehicle controls.

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3