High-resolution calcareous nannofossil biostratigraphy and facies of Nimar Sandstone Formation (Bagh Group), central India and its bearing on Oceanic Anoxic Event 2

Author:

Jafar Syed A.1

Affiliation:

1. Ex-Scientist F, Birbal sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh, India.

Abstract

It is proposed to consider Narmada Valley Late Cretaceous sequences in three sectors with proper selection of stratotype in each sector: Eastern Sector: comprising of Lameta group of rocks with type area in Jabalpur area, essentially laid down in lacustrine-paedogenic milieu and containing a variety of fossils including dinosaur remains of Late Maastrichtian age. No evidence of sea incursion is available in the Eastern Sector either via the Narmada lineament or the K-G Basin. Central Sector: comprising of the Bagh Group in ascending order of: Nimar Sandstone Formation–Nodular Limestone Formation–Coralline-Bryozoan Limestone Formation, laid down in estuarine complex entirely within Turonian without any evidence of Cenomanian and Coniacian age calcareous nannofossils or other fossils being present. In the western part of Central Sector: Siliciclastic rocks and limestones referred to as Nimar Sandstone Formation curiously lack Late Cenomanian marker species, hence could be of Early Turonian age. Western Sector: comprises of Lacustrine sediments associated with Deccan Flood Basalt. The absence of the Cenomanian/Turonian Boundary and Black shales negates the presence of global OAE2 events in the Narmada lineament, but several OAE events are recognised in the Cauvery Basin, southeastern India. Uranium- and Thorium-rich Lower and Upper Nimar Sandstone Formation overlying crystalline basement are interpreted to have been essentially laid down in a fully marine estuarine milieu with reworked plant, and palynofossils including dinosaur remains. Calcareous nannofossils recovered from Upper Nimar Sandstone Formation over four decades ago and assigned Late Turonian age is revised based on modern data incorporating calcareous nannofossil and planktonic foraminifera datum and now suggest an older age of Early Turonian matching a zone with FAD of Quadrum gartneri at the base and FAD of H. helvetica at the top. It must be emphasised that except for the solitary and unique incursion of Early Turonian (ca. 93.9 Ma) sea along the Narmada lineament reaching eastward (>300 km) up to the present town of Indore, no other marine intrusion ever took place on Indian shield except along collision facing Subathu–Dogadda lineament during Late Maastrichtian. It would be erroneous to suggest that the global eustatic rise of sea level caused the entry of the Turonian sea along the Narmada lineament; instead, it was earlier speculated by me that Large Igneous Province activity of Mahajanga Flood Basalt of Madagascar (ca. 93.9 Ma) could have most probably caused a short-lived Turonian sea to enter Narmada lineament from the west around C/T boundary.

Publisher

SAGE Publications

Subject

Paleontology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3