Resveratrol promotes the differentiation of human umbilical cord mesenchymal stem cells into esophageal fibroblasts via AKT signaling pathway

Author:

Chen Xiujing1,Sun Zihao1,Wu Qian1,Shao Lijuan1234,Bei Jiaxin1234,Lin Yiguang12345ORCID,Chen Hongjie5,Chen Size12346

Affiliation:

1. Department of Immuno-Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China

2. Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, Guangdong Pharmaceutical University, Guangzhou, China

3. Key Laboratory of Cancer Immunotherapy of Guangdong High Education Institutes, Guangdong Pharmaceutical University, Guangzhou, China

4. Guangdong Provincial Key Laboratory for Monitoring of Adverse Effects Associated with CAR-T Cell Therapies, Guangdong Pharmaceutical University, Guangzhou, China

5. Department of Traditional Chinese Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China

6. Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China

Abstract

Objectives: Resveratrol has been implicated in the differentiation and development of human umbilical cord mesenchymal stem cells. The differentiation of into esophageal fibroblasts is a promising strategy for esophageal tissue engineering. However, the pharmacological effect and underlying mechanism of resveratrol on human umbilical cord mesenchymal stem cells differentiation are unknown. Here, we investigated the effects and mechanism of resveratrol on the differentiation of human umbilical cord mesenchymal stem cells. Methods: Using a transwell-membrane coculture system to culture human umbilical cord mesenchymal stem cells and esophageal fibroblasts, we examined how resveratrol act on the differentiation of human umbilical cord mesenchymal stem cells. Immunocytochemistry, Sirius red staining, quantitative real-time PCR, and Western blotting were performed to examine collagen synthesis and possible signaling pathways in human umbilical cord mesenchymal stem cells. Results: We found that resveratrol promoted collagen synthesis and AKT phosphorylation. However, co-treatment of cells with resveratrol and the PI3K inhibitor LY294002 inhibited collagen synthesis and AKT phosphorylation. We demonstrated that resveratrol down-regulated the expression of IL-6, TGF-β, caspase-9, and Bax by activating the AKT pathway in human umbilical cord mesenchymal stem cell. Furthermore, resveratrol inhibited phosphorylated NF-ĸB in human umbilical cord mesenchymal stem cells. Conclusion: Our data suggest that resveratrol promotes the differentiation of human umbilical cord mesenchymal stem cells into fibroblasts. The underlying mechanism is associated with the downregulation of IL-6 and TGF-β via the AKT pathway and by inhibiting the NF-ĸB pathway. Resveratrol may be useful for esophageal tissue engineering.

Funder

Guangdong Provincial Department of Science and Technology

Department of Education of Guangdong Province

Guangdong Province Medical Products Administration

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3