Impact of Simulated Microgravity on Cell Cycle Control and Cytokine Release by U937 Cells

Author:

Maier J.A.M.1

Affiliation:

1. Department of Preclinical Sciences LITA-Vialba, University of Milan Medical School, Milan, Italy

Abstract

Previous experiments from flight- and ground-based model systems indicate unexpected alterations of human leukocytes, leading to growth retardation and depression of mitogenic activation. The response of myelomonocytic U937 cells to simulated microgravity was therefore investigated. To this purpose, U937 cells were cultured in the NASA-developed bioreactor Rotating Wall Vessel (RWV) as a device to simulate microgravity on earth. No apoptosis was detected, in part because of the up-regulation of hsp70. In agreement with results obtained in space-flown U937 cells, the cells grew more slowly in the RWV than under normal conditions and this correlated with the down-modulation of cdc25B. Marked alterations of the cytokine secretion profile and, in particular, of inflammatory chemokines, as well as a decrease of the proteasome activity, were also observed in response to microgravity.

Publisher

SAGE Publications

Subject

Pharmacology,Immunology,Immunology and Allergy

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3