Photodynamic Therapy Targeted to Pathogens

Author:

Demidova T. N.1,Hamblin M. R.1

Affiliation:

1. Wellman Center for Photomedicine, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Boston, MA. 02114, USA

Abstract

Photodynamic therapy (PDT) employs a non-toxic dye termed a photosensitizer (PS) together with low intensity visible light, which, in the presence of oxygen, produce cytotoxic species. PS can be targeted to its destination cell or tissue and, in addition, the irradiation can be spatially confined to the lesion giving PDT the advantage of dual selectivity. This promising approach can be used for various applications including microbial inactivation and the treatment of infections. Resistance to PDT has not been shown and multiantibiotic-resistant strains are as easily killed as naïve strains. It is known that Gram (+) bacteria are more sensitive to PDT as compared to Gram (-) species. However, the use of cationic PS or agents that increase the permeability of the outer membrane allows for the effective killing of Gram (-) organisms. Some PS have an innate positive charge, but our approach is to link PS to a cationic molecular vehicle such as poly-L-lysine. This modification dramatically increases PS binding to and penetrating through the negatively charged bacterial permeability barrier. Due to focused light delivery the use of PDT is possible only for localized infections. Nonetheless numerous diseases can be treated. Selectivity of the PS for microbes over host cells, accurate delivery of the PS into the infected area, and PDT dose adjustment help minimize side effects and give PDT an advantage over conventional therapy. There are only a few reports about the use of antimicrobial PDT in animal models and clinical trials. We have used genetically modified bioluminescent bacteria to follow the effect of PDT in infected wounds, burns, and soft tissue infections in mice. Not only were bacteria infecting wounds, burns, and abscesses killed, but mice were saved from death due to sepsis and wound healing was improved.

Publisher

SAGE Publications

Subject

Pharmacology,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3