Microrna-149 Inhibits Proliferation and Invasion of Glioma Cells via Blockade of Akt1 Signaling

Author:

Pan S-J.1,Zhan S-K.1,Pei B-G.2,Sun Q-F.1,Bian L-G.1,Sun B-M.1

Affiliation:

1. Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai PRC

2. Department of Neurosurgery, Chao Yang Hospital, Huainan, Anhui province, PRC

Abstract

MicroRNAs (miRNAs) play important roles in the regulation of gene expressions. Aberrant expression of miRNAs is implicated in a variety of biological and pathological processes, including the tumorigenesis of glioma (GM). Though the molecular mechanisms of protein kinase B (AKT) survival signal have been comprehensively explored, the role of miR-149 in glioblastoma (GBM) and its regulation on AKT signaling have not yet been ascertained. The present study aimed to elucidate the role and molecular mechanisms of miR-149 in U251 GM cells. Using a gain-of-function approach, we investigated the effects of lentivirus-mediated overexpression of miR-149 on the expression of phosphated-AKT1 (p-AKT1), proliferating cell nuclear antigen (PCNA), matrix metallopeptidase-2 (MMP-2) and CyclinD1 in U251 cells and nude mice subcutaneous xenograft tumors by Real-time PCR, Western blot and immunohistochemical assays. Proliferative activities indicated by MTT assay, invasive potential by Transwell and cycle distribution by flow cytometry were carried out for functional analysis of U251 cells after infection with miR-149 mimic. As a consequence, miR-149 inhibited the expression of p-AKT1, PCNA, CyclinD1 and MMP-2, reduced the proliferative activities and invasive potential, and induced cycle arrest in G0/G1 phase in U251 cells. In conclusion, our findings show that miR-149 as tumor suppressor may be involved in the proliferation and invasion of GM cells via blockade of the AKT1 signaling, and be considered as a candidate target for the treatment of cancer.

Publisher

SAGE Publications

Subject

Pharmacology,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3