Paraquat-and Rotenone-Induced Models of Parkinson's Disease

Author:

Nisticò R.12,Mehdawy B.3,Piccirilli S.4,Mercuri N.25

Affiliation:

1. Department of Pharmacobiology, University of Calabria, Rende

2. IRCCS Santa Lucia Foundation, Rome

3. IRCCS National Neurological Institute C. Mondino Foundation, Pavia

4. Pharmaceutical Biotechnology Center, University of Rome “Tor Vergata”, Rome

5. Neurological Clinic, University of Rome “Tor Vergata”, Rome, Italy

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder mainly characterized by a loss of dopaminergic (DA) neurons in the substantia nigra pars compacta. In recent years, several new genes and environmental factors have been implicated in PD, and their impact on DA neuronal cell death is slowly emerging. However, PD etiology remains unknown, whereas its pathogenesis begins to be clarified as a multifactorial cascade of deleterious factors. Recent epidemiological studies have linked exposure to environmental agents, including pesticides, with an increased risk of developing the disease. As a result, over the last two decades the ‘environmental hypothesis’ of PD has gained considerable interest. This speculates that agricultural chemicals in the environment, by producing selective dopaminergic cell death, can contribute to the development of the disease. However, a causal role for pesticides in the etiology of PD has yet to be definitively established. Importantly, most insights into PD pathogenesis came from investigations performed in experimental models of PD, especially those produced by neurotoxins. This review presents data obtained in our laboratories along with current views on the neurotoxic actions induced by the two most popular parkinsonian pesticide neurotoxins, namely paraquat and rotenone. Although confined to these two chemicals, mechanistic studies underlying dopaminergic cell death are of the utmost importance to identify new drug targets for the treatment of PD.

Publisher

SAGE Publications

Subject

Pharmacology,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3