Synthesis of a new insulin-mimetic anti-diabetic drug containing vitamin A and vanadium(IV) salt: Chemico-biological characterizations

Author:

Adam Abdel Majid A1,Naglah Ahmed M23,Al-Omar Mohamed A2,Refat Moamen S14

Affiliation:

1. Department of Chemistry, Faculty of Science, Taif University, Taif, Saudi Arabia

2. Department of Pharmaceutical Chemistry, Drug Exploration & Development Chair, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia

3. Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Cairo, Egypt

4. Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt

Abstract

Diabetes patients suffer from chronic disorders in the metabolism due to high blood sugar caused by anomalies in insulin excretion. Recently, vanadium compounds have been prepared and functionalized to decrease the level of hyperglycemia. Vitamin A boosts beta cell activity; therefore, the lack of this vitamin plays a role in the development of type 2 diabetes. The aim of this article focused on the synthesis of a new anti-diabetic drug formed from the complexation of a vanadium(IV) salt with vitamin A. Vitamin A acts as a unidentate chelate through the oxygen of its –OH group. The vanadium(IV) compound is surrounded by two vitamin A molecules. The [VO(vitamin A)2(H2O)2] compound was synthesized in a binary solvent system consisting of MeOH/H2O (1:1 ratio) in alkaline media at pH = 8. This compound was characterized using Fourier transform infrared spectra (FT-IR), electronic spectra (UV–vis), effective magnetic moment, electron spin resonance (ESR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermal analysis (thermogravimetry (TG)–differential thermal analysis (DTA)). Anti-diabetic efficiency for the vanadium(IV) compound was assessed in streptozotocin (STZ)-induced diabetic mice. The results of the animal studies demonstrate the ability of the vanadium(IV) complex to act as an anti-diabetic agent, as measured by improvements of lipid profile, antioxidant activity (superoxide dismutase), malondialdehyde (MDA), glutathione, methionine synthase, and kidney and liver functions.

Publisher

SAGE Publications

Subject

Pharmacology,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3