Evodiamine suppresses the progression of non-small cell lung carcinoma via endoplasmic reticulum stress-mediated apoptosis pathway in vivo and in vitro

Author:

Li Yuting123,Wang Yuming1,Wang Xiaoqun23,Jin Lulu1,Yang Lu1,Zhu Jinli23,Wang Hongwu1,Zheng Fang1,Cui Huantian4ORCID,Li Xiaojiang23,Jia Yingjie23

Affiliation:

1. First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China

2. National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China

3. Tianjin University of Traditional Chinese Medicine, Tianjin, China

4. Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.

Abstract

Background Evodiamine (EVO) is one of the major components isolated from Evodia rutaecarpa (Juss.). Recent studies have shown that EVO has an anti-cancer effect. However, the pharmacological mechanism by which EVO impacts cancer is still poorly understood. Objectives This study focused on asking the anti-cancer effect of EVO in human non-small cell lung carcinoma (NSCLC), and in particular to investigate whether EVO acts via modulating the endoplasmic reticulum stress (ERS)-mediated apoptosis pathway. Materials and Methods A Lewis lung carcinoma (LLC) tumor-bearing mouse model was treated with low-dose EVO (5 mg/kg) and high-dose EVO (10 mg/kg) intraperitoneally for 14 d. The effects of EVO on tumor growth, apoptosis, and ERS were assessed. In addition, NSCLC A549 and LLC cells were treated with EVO in vitro. The effects of EVO on cell proliferation, apoptosis, and ERS were investigated. Finally, 4-phenylbutyric acid (4-PBA), an ERS inhibitor, was used to validate whether EVO induced apoptosis of NSCLC cells by modulating ERS. Results EVO treatment significantly inhibited tumor growth in LLC tumor-bearing mice. H&E staining indicated that EVO treatment reduced the number of tumor cells and the nucleo-plasmic ratio. Immunostaining showed that EVO treatment significantly decreased the expression of Ki-67. TUNEL staining revealed that EVO induced apoptosis in the tumor. Likewise, EVO treatment up-regulated the expression of apoptosis-related genes and proteins and increased activation of the ERS pathway in the tumor. Additionally, EVO inhibited cell proliferation and increased cell apoptotic rates in A549 and LLC cells. EVO also increased the expression levels of genes and proteins associated with ERS-mediated apoptosis pathway in vitro. The effects of EVO on apoptosis were abolished by 4-PBA treatment. Conclusions Our study demonstrated that EVO suppresses the progression of NSCLC by modulating the ERS-mediated apoptosis pathway.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Pharmacology,Immunology,Immunology and Allergy,Pharmacology,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3