Regulation of vascular large-conductance calcium-activated potassium channels by Nrf2 signalling

Author:

Li Yong12,Wang Xiao-Li2,Sun Xiaojing2,Chai Qiang23,Li Jingchao24,Thompson Benjamin2,Shen Win-Kuang5,Lu Tong2,Lee Hon-Chi2

Affiliation:

1. Department of Cardiology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, China

2. Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA

3. Department of Physiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, P.R. China

4. Department of Emergency Medicine, Henan Provincial People’s Hospital, Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China

5. Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ, USA

Abstract

BK channels are major ionic determinants of vasodilation. BK channel function is impaired in diabetic vessels due to accelerated proteolysis of its beta-1 (BK-β1) subunits in response to increased oxidative stress. The nuclear factor E2-related factor-2 (Nrf2) signalling pathway has emerged as a master regulator of cellular redox status, and we hypothesized that it plays a central role in regulating BK channel function in diabetic vessels. We found that Nrf2 expression was markedly reduced in db/db diabetic mouse aortas, and this was associated with significant downregulation of BK-β1. In addition, the muscle ring finger protein 1 (MuRF1), a known E-3 ligase targeting BK-β1 ubiquitination and proteasomal degradation, was significantly augmented. These findings were reproduced by knockdown of Nrf2 by siRNA in cultured human coronary artery smooth muscle cells. In contrast, adenoviral transfer of Nrf2 gene in these cells downregulated MuRF1 and upregulated BK-β1 expression. Activation of Nrf2 by dimethyl fumarate preserved BK-β1 expression and protected BK channel and vascular function in db/db coronary arteries. These results indicate that expression of BK-β1 is closely regulated by Nrf2 and vascular BK channel function can be restored by Nrf2 activation. Nrf2 should be considered a novel therapeutic target in the treatment of diabetic vasculopathy.

Funder

National Institute of Health

American Diabetes Association

Young Scientist Fund of the Natural Science Foundation of Jiangsu Province, China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3