Stabilized Glucagon Formulation for Bihormonal Pump Use

Author:

Steiner Solomon S.1,Li Ming1,Hauser Robert1,Pohl Roderike1

Affiliation:

1. Biodel Inc., Danbury, Connecticut

Abstract

Background: A promising approach to treat diabetes is the development of an automated bihormonal pump administering glucagon and insulin. A physically and chemically stable glucagon formulation does not currently exist. Our goal is to develop a glucagon formulation that is stable as a clear ungelled solution, free of fibrils at a pH of 7 for at least 7 days at 37 °C. Methods: Experimental glucagon formulations were studied for stability at 25 and 37 °C. Chemical degradation was quantified by reverse phase ultra-performance liquid chromatography. Physical changes were studied using light obscuration and visual observations. Results: Glucagon content of Biodel glucagon and Lilly glucagon at pH 2 and pH 4, as measured by high-performance liquid chromatography at 25 °C, was 100% at 7 days compared to 87% and <7%, respectively. Light obscuration measurements indicated Lilly glucagon at pH 4 formed an opaque gel, while Biodel glucagon formulation remained a clear solution beyond 50 days at 37 °C. Visual observations confirmed these results. Conclusions: Biodel glucagon is a stabilized formulation at physiological pH and remains chemically and physically stable beyond 7 days at 37 °C, suggesting its utility for use in a bihormonal pump.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3