Multicenter Observational Study of the First-Generation Intravenous Blood Glucose Monitoring System in Hospitalized Patients

Author:

Bochicchio Grant V.1,Hipszer Brian R.2,Magee Michelle F.3,Bergenstal Richard M.4,Furnary Anthony P.5,Gulino Angela M.2,Higgins Michael J.2,Simpson Peter C.6,Joseph Jeffrey I.7

Affiliation:

1. Washington University School of Medicine, St. Louis, MO, USA

2. Edwards Lifesciences, Irvine, CA, USA

3. Georgetown University, Washington Hospital Center, Washington, DC, USA

4. International Diabetes Center, Methodist Hospital, Minneapolis, MN, USA

5. Starr-Wood Cardiac Group, Providence Heart and Vascular Institute, Portland, OR, USA

6. Dexcom, San Diego, CA, USA

7. Thomas Jefferson University, Philadelphia, PA, USA

Abstract

Background: Current methods of blood glucose (BG) monitoring and insulin delivery are labor intensive and commonly fail to achieve the desired level of BG control. There is great clinical need in the hospital for a user-friendly bedside device that can automatically monitor the concentration of BG safely, accurately, frequently, and reliably. Methods: A 100-patient observation study was conducted at 6 US hospitals to evaluate the first generation of the Intravenous Blood Glucose (IVBG) System (Edwards Lifesciences LLC & Dexcom Inc). Device safety, accuracy, and reliability were assessed. A research nurse sampled blood from a vascular catheter every 4 hours for ≤ 72 hours and BG concentration was measured using the YSI 2300 STAT Plus Analyzer (YSI Life Sciences). The IVBG measurements were compared to YSI measurements to calculate point accuracy. Results: The IVBG systems logged more than 5500 hours of operation in 100 critical care patients without causing infection or inflammation of a vein. A total of 44135 IVBG measurements were performed in 100 patients with 30231 measurements from the subset of 75 patients used for accuracy analysis. In all, 996 IVBG measurements were time-matched with reference YSI measurements. These pairs had a mean absolute difference (MAD) of 11.61 mg/dl, a mean absolute relative difference (MARD) of 8.23%, 93% met 15/20% accuracy defined by International Organization for Standardization 15197:2003 standard, and 93.2% were in zone A of the Clarke error grid. The IVBG sensors were exposed to more than 200 different medications with no observable effect on accuracy. Conclusions: The IVBG system is an automated and user-friendly glucose monitoring system that provides accurate and frequent BG measurements with great potential to improve the safety and efficacy of insulin therapy and BG control in the hospital, potentially leading to improved clinical outcomes.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3