The Impact of Accelerometer and Heart Rate Data on Hypoglycemia Mitigation in Type 1 Diabetes

Author:

Stenerson Matthew1,Cameron Fraser2,Wilson Darrell M.1,Harris Breanne1,Payne Shelby1,Bequette B. Wayne2,Buckingham Bruce A.1

Affiliation:

1. Division of Pediatric Endocrinology, Stanford University, Stanford, CA, USA

2. Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA

Abstract

Background: Aerobic exercise can lower blood glucose levels and alter insulin sensitivity both during and several hours after exercise, creating challenges for a closed-loop artificial pancreas. Predictive low glucose suspend (PLGS) algorithms are a first step toward an artificial pancreas, but few of these have been successfully applied to exercise. This study incorporates physical activity measurements from a combined accelerometer/heart rate monitor (HRM) to improve the performance of an existing PLGS algorithm at mitigating exercise-associated hypoglycemia in participants with type 1 diabetes. Methods: In all, 22 subjects with type 1 diabetes on insulin pump therapy were provided a combined accelerometer/HRM and (if not already using one) a continuous glucose monitor (CGM), then instructed to go about their everyday lives while wearing the devices. After the monitoring period, each subject’s insulin pump, CGM, and accelerometer/HRM were downloaded and the data were used to augment an existing PLGS algorithm to incorporate activity. Using a computer simulator, the accelerometer-augmented algorithm was compared to the HRM-augmented algorithm to determine which was most effective at mitigating hypoglycemia. Results: Mean length of monitoring was 4.9 days. Across all subjects, 11 061 CGM readings were recorded during the monitoring period. In the simulator analysis, the PLGS algorithm reduced hypoglycemia by 62%, compared to 71% and 74% reductions for the HRM-augmented and accelerometer-augmented algorithms, respectively; combined accelerometer and HRM augmentation provided a 76% reduction. Conclusions: In a simulated setting, the accelerometer-augmented pump suspension algorithm decreases the incidence of exercise-related hypoglycemia by a meaningful amount compared to the PLGS algorithm alone. Results also failed to justify the additional user burden of a HRM.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3