In Vitro Sugar Interference Testing With Amperometric Glucose Oxidase Sensors

Author:

Boehm Ryan1,Donovan John12,Sheth Disha13,Durfor Andrew4,Roberts Jason5,Isayeva Irada1

Affiliation:

1. Division of Biology, Chemistry, and Material Science (DBCMS), Office of Science and Engineering Laboratories (OSEL), Center for Devices and Radiological Health (CDRH), Food and Drug Administration (FDA), Silver Spring, MD, USA

2. Penn State College of Medicine, Hershey, PA, USA

3. Dexcom, Inc, San Diego, CA, USA

4. Office of Compliance, CDRH/FDA, Silver Spring, MD, USA

5. Office of Device Evaluation, CDRH/FDA, Silver Spring, MD, USA

Abstract

Background: Electrochemical enzymatic glucose sensors are intended to measure blood or interstitial fluid glucose concentrations. One class of these glucose sensors are continuous glucose monitors (CGMs), indicated for tracking and trending of glucose concentrations in interstitial fluid and as an adjunct to blood glucose testing. Currently approved CGMs employ a glucose oxidase (GOx) electrochemical detection scheme. Potential interfering agents can impact the accuracy of results obtained by glucose sensors, including CGMs. Methods: Seven sugars, seven sugar alcohols, and three artificial sweeteners were in vitro screened for interference with amperometric glucose oxidase (GOx) sensors at concentrations greater than physiologic concentrations. Galactose was investigated further at physiologically relevant concentrations using a custom amperometric system. Furthermore, glucose and galactose calibration experiments were conducted to facilitate multiple enzyme kinetic analysis approaches (Michaelis-Menten and Hill equation) to understand the potential source and mechanism of interference from galactose. Results: Under in vitro testing, except for galactose, xylose and mannose, all screened compounds exhibited interference bias, expressed in mean absolute relative difference (MARD), of ⩽ 20% even at concentrations significantly higher than normal physiologic concentrations. Galactose exhibited, CGM-dependent, MARD of 47-72% and was subjected to further testing. The highest recorded mean relative difference (MRD) was 6.9 ± 1.3% when testing physiologically relevant galactose concentrations (0.1-10 mg/dL). Enzyme kinetic analysis provided calculations of maximum reaction rates ([Formula: see text]), apparent Michaelis constants ([Formula: see text]), and Hill equation h parameters for glucose and galactose substrates for the enzymes in the CGMs. Conclusion: Under the conditions of in vitro screening, 14 of the 17 compounds did not exhibit measuarable interference. Galactose exhibited the highest interference during screening, but did not substantially interfere with CGMs under the conditions of in vitro testing at physiologically relevant concentrations. Enzyme kinetic analysis conducted with galactose supported the notion that (1) the reactivity of GOx enzyme toward nonglucose sugars and (2) the presence of enzymatic impurities (such as galactose oxidase) are two potential sources for sugar interference with GOx glucose sensors, and thus, should be considered during device development.

Funder

U.S. Food and Drug Administration

Oak Ridge Institute for Science and Education

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3