Performance Effect of Adjusting Insulin Sensitivity for Model-Based Automated Insulin Delivery Systems

Author:

Moscoso-Vasquez Marcela1ORCID,Fabris Chiara1,Breton Marc D.1ORCID

Affiliation:

1. Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA

Abstract

Background: Model predictive control (MPC) has become one of the most popular control strategies for automated insulin delivery (AID) in type 1 diabetes (T1D). These algorithms rely on a prediction model to determine the best insulin dosing every sampling time. Although these algorithms have been shown to be safe and effective for glucose management through clinical trials, managing the ever-fluctuating relationship between insulin delivery and resulting glucose uptake (aka insulin sensitivity, IS) remains a challenge. We aim to evaluate the effect of informing an AID system with IS on the performance of the system. Method: The University of Virginia (UVA) MPC control-based hybrid closed-loop (HCL) and fully closed-loop (FCL) system was used. One-day simulations at varying levels of IS were run with the UVA/Padova T1D Simulator. The AID system was informed with an estimated value of IS obtained through a mixed meal glucose tolerance test. Relevant controller parameters are updated to inform insulin dosing of IS. Performance of the HCL/FCL system with and without information of the changing IS was assessed using a novel performance metric penalizing the time outside the target glucose range. Results: Feedback in AID systems provides a certain degree tolerance to changes in IS. However, IS-informed bolus and basal dosing improve glycemic outcomes, providing increased protection against hyperglycemia and hypoglycemia according to the individual’s physiological state. Conclusions: The proof-of-concept analysis presented here shows the potentially beneficial effects on system performance of informing the AID system with accurate estimates of IS. In particular, when considering reduced IS, the informed controller provides increased protection against hyperglycemia compared with the naïve controller. Similarly, reduced hypoglycemia is obtained for situations with increased IS. Further tailoring of the adaptation schemes proposed in this work is needed to overcome the increased hypoglycemia observed in the more resistant cases and to optimize the performance of the adaptation method.

Funder

NIH Clinical Center

Dexcom

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3