Modeling the Physiological Factors Affecting Glucose Sensor Function in Vivo

Author:

Novak Matthew T.1,Reichert William M.1

Affiliation:

1. Department of Biomedical Engineering, Duke University, Durham, NC, USA

Abstract

For implantable sensors to become a more viable option for continuous glucose monitoring strategies, they must be able to persist in vivo for periods longer than the 3- to 7-day window that is the current industry standard. Recent studies have attributed such limited performance to tissue reactions resulting from implantation. While in vivo biocompatibility studies have provided much in the way of understanding histology surrounding an implanted sensor, little is known about how each constituent of the foreign body response affects sensor function. Due to the ordered composition and geometry of implant-associated tissue reactions, their effects on sensor function may be computationally modeled and analyzed in a way that would be prohibitive using in vivo studies. This review both explains how physiologically accurate computational models of implant-associated tissue reaction can be designed and shows how they have been utilized thus far. Going forward, these in silico models of implanted sensor behavior may soon complement in vivo studies to provide valuable information for improved sensor designs.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3