Identification of Main Factors Explaining Glucose Dynamics During and Immediately After Moderate Exercise in Patients With Type 1 Diabetes

Author:

Ben Brahim Najib12,Place Jerome2,Renard Eric2,Breton Marc D.12

Affiliation:

1. Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA

2. Department of Endocrinology, Diabetes, Nutrition and Clinical Investigation Center INSERM 1411, Montpellier University Hospital and Institute of Functional Genomics, CNRS 5203/INSERM U1191/University of Montpellier, Montpellier, France

Abstract

Background: Physical activity is recommended for patients with type 1 diabetes (T1D). However, without proper management, it can lead to higher risk for hypoglycemia and impaired glycemic control. In this work, we identify the main factors explaining the blood glucose dynamics during exercise in T1D. We then propose a prediction model to quantify the glycemic drop induced by a mild to moderate physical activity. Methods: A meta-data analysis was conducted over 59 T1D patients from 4 different studies in the United States and France (37 men and 22 women; 47 adults; weight, 71.4 ± 10.6 kg; age, 42 ± 10 years; 12 adolescents: weight, 60.7 ± 12.5 kg; age, 14.0 ± 1.4 years). All participants had physical activity between 3 and 5 pm at a mild to moderate intensity for approximately 30 to 45 min. A multiple linear regression analysis was applied to the data to identify the main parameters explaining the glucose dynamics during such physical activity. Results: The blood glucose at the beginning of exercise ([Formula: see text]), the ratio of insulin on board over total daily insulin ([Formula: see text]) and the age as a categorical variable (1 for adult, 0 for adolescents) were significant factors involved in glucose evolution at exercise (all P < .05). The multiple linear regression model has an R-squared of .6. Conclusions: The main factors explaining glucose dynamics in the presence of mild-to-moderate exercise in T1D have been identified. The clinical parameters are formally quantified using real data collected during clinical trials. The multiple linear regression model used to predict blood glucose during exercise can be applied in closed-loop control algorithms developed for artificial pancreas.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3