A Closed-Loop Artificial Pancreas Based on Risk Management

Author:

Cameron Fraser1,Bequette B. Wayne2,Wilson Darrell M.3,Buckingham Bruce A.3,Lee Hyunjin2,Niemeyer Günter4

Affiliation:

1. Department of Aeronautics and Astronautics, Stanford University, Stanford, California

2. Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York

3. Pediatric Endocrinology and Diabetes, Stanford University, Stanford, California

4. Department of Mechanical Engineering, Stanford University, Stanford, California

Abstract

Background: Control algorithms that regulate blood glucose (BG) levels in individuals with type 1 diabetes mellitus face several fundamental challenges. Two of these are the asymmetric risk of clinical complications associated with low and high glucose levels and the irreversibility of insulin action when using only insulin. Both of these nonlinearities force a controller to be more conservative when uncertainties are high. We developed a novel extended model predictive controller (EMPC) that explicitly addresses these two challenges. Method: Our extensions to model predictive control (MPC) operate in three ways. First, they explicitly minimize the combined risk of hypoglycemia and hyperglycemia. Second, they integrate the effect of prediction uncertainties into the risk. Third, they understand that future control actions will vary if measurements fall above or below predictions. Using the University of Virginia/Padova Simulator, we compared our novel controller (EMPC) against optimized versions of a proportional-integral-derivative (PID) controller, a traditional MPC, and a basal/bolus (BB) controller, as well as against published results of an independent MPC (IMPC). The BB controller was optimized retrospectively to serve as a bound on the possible performance. Results: We tuned each controller, where possible, to minimize a published blood glucose risk index (BGRI). The simulated controllers (PID/MPC/EMPC/BB) provided BGRI values of 2.99/3.05/2.51/1.27 as compared to the published IMPC BGRI value of 4.10. These correspond to 73/79/84/92% of BG values lying in the euglycemic range (70–180 mg/dl), respectively, with mean BG levels of 151/156/147/140 mg/dl. Conclusion: The EMPC strategy extends MPC to explicitly address the issues of asymmetric glycemic risk and irreversible insulin action using estimated prediction uncertainties and an explicit risk function. This controller reduces the avoidable BGRI by 56% ( p < .05) relative to a published MPC algorithm studied on a similar population.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3