Development of a Microsphere-Based System to Facilitate Real-Time Insulin Monitoring

Author:

Kahanovitz Lindy12,Seker Erkin34,Marks Robert S.1,Yarmush Martin L.3,Konry Tania35,Russell Steven J.2

Affiliation:

1. Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel

2. Diabetes Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

3. Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Institute, Boston, MA, USA

4. Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA, USA

5. Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA

Abstract

Background: The speed of insulin absorption after subcutaneous delivery is highly variable. Incorrect assumptions about insulin pharmacokinetics compromise effective glycemic regulation. Our ultimate goal is to develop a system to monitor insulin levels in vivo continuously, allowing pharmacokinetic parameters to be calculated in real time. We hypothesize that a bead-based detection system can be run on a flow-through microfluidic platform to measure insulin in subcutaneous fluid sampled via microdialysis. As a first step in development, we focused on microsphere-based measurement of insulin. Methods: Polystyrene microspheres coated with an anti-insulin monoclonal antibody were exposed to insulin-containing solutions, and after addition of a fluorescently labeled anti-insulin monoclonal antibody with a distinct epitope, bead-associated fluorescence was detected by fluorescence microscopy in 96-well plates or in a flow-through, microfluidic platform. Results: The bead detection system in plates had a linear range in buffer for regular human insulin (RHI), insulin lispro, and insulin aspart of 15-1115 µIU/ml, 14-976 µIU/ml, and 25-836 µIU/ml, respectively. Measurement on plasma samples demonstrated proportionality between basal and peak insulin levels similar to the laboratory reference method. Preliminary results in a polydimethylsiloxane-based, flow-through, microfluidic platform showed a strong signal at peak insulin levels. Conclusions: We have developed a microsphere-based system to rapidly measure levels of insulin and insulin analogs. We have further demonstrated proof of concept that this bead detection system can be implemented in a lab-on-a-chip format, which will be further developed and combined with microdialysis for real-time monitoring of insulin in vivo.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3