Affiliation:
1. Department of Health Science and Technology, Aalborg University, Denmark
Abstract
This report describes how a Conditional Generative Adversarial Network (CGAN) was used to synthesize realistic continuous glucose monitoring systems (CGM) from healthy individuals and individuals with type 1 diabetes over a range of different HbA1c levels. The results showed that even though the CGAN generated data, did not perfectly reflect real world CGM, many of the important features were captured and reflected in the synthetic signals. It is briefly discussed how heterogenous data sources constitutes a challenge for comparison of predictive CGM models. Therefore 40,000 CGM days were generated by the trained CGAN, equivalent to 940,000 hours of synthetic CGM measurements. These data have been made available in a public database, which can be used as a reference in future studies.
Subject
Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献