Identifiability Analysis of Three Control-Oriented Models for Use in Artificial Pancreas Systems

Author:

Garcia-Tirado Jose1ORCID,Zuluaga-Bedoya Christian2ORCID,Breton Marc D.1

Affiliation:

1. Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA

2. Dynamic Processes Research Group KALMAN, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia

Abstract

Objective: Our aim is to analyze the identifiability of three commonly used control-oriented models for glucose control in patients with type 1 diabetes (T1D). Methods: Structural and practical identifiability analysis were performed on three published control-oriented models for glucose control in patients with type 1 diabetes (T1D): the subcutaneous oral glucose minimal model (SOGMM), the intensive control insulin-nutrition-glucose (ICING) model, and the minimal model control-oriented (MMC). Structural identifiability was addressed with a combination of the generating series (GS) approach and identifiability tableaus whereas practical identifiability was studied by means of (1) global ranking of parameters via sensitivity analysis together with the Latin hypercube sampling method (LHS) and (2) collinearity analysis among parameters. For practical identifiability and model identification, continuous glucose monitor (CGM), insulin pump, and meal records were selected from a set of patients (n = 5) on continuous subcutaneous insulin infusion (CSII) that underwent a clinical trial in an outpatient setting. The performance of the identified models was analyzed by means of the root mean square (RMS) criterion. Results: A reliable set of identifiable parameters was found for every studied model after analyzing the possible identifiability issues of the original parameter sets. According to an importance factor ([Formula: see text]), it was shown that insulin sensitivity is not the most influential parameter from the dynamical point of view, that is, is not the parameter impacting the outputs the most of the three models, contrary to what is assumed in the literature. For the test data, the models demonstrated similar performance with most RMS values around 20 mg/dl (min: 15.64 mg/dl, max: 51.32 mg/dl). However, MMC failed to identify the model for patient 4. Also, considering the three models, the MMC model showed the higher parameter variability when reidentified every 6 hours. Conclusion: This study shows that both structural and practical identifiability analysis need to be considered prior to the model identification/individualization in patients with T1D. It was shown that all the studied models are able to represent the CGM data, yet their usefulness in a hypothetical artificial pancreas could be a matter of debate. In spite that the three models do not capture all the dynamics and metabolic effects as a maximal model (ie, our FDA-accepted UVa/Padova simulator), SOGMM and ICING appear to be more appealing than MMC regarding both the performance and parameter variability after reidentification. Although the model predictions of ICING are comparable to the ones of the SOGMM model, the large parameter set makes the model prone to overfitting if all parameters are identified. Moreover, the existence of a high nonlinear function like [Formula: see text] prevents the use of tools from the linear systems theory.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3