Clinical Accuracy of a Continuous Glucose Monitoring System With an Advanced Algorithm

Author:

Bailey Timothy S.1,Chang Anna2,Christiansen Mark3

Affiliation:

1. AMCR Institute, Escondido, CA, USA

2. John Muir Physician Network Clinical Research Center, Concord, CA, USA

3. Diablo Clinical Research Inc, Walnut Creek, CA, USA

Abstract

Background: We assessed the performance of a modified Dexcom G4 Platinum system with an advanced algorithm, in comparison with frequent venous samples measured on a laboratory reference (YSI) during a clinic session and in comparison to self-monitored blood glucose (SMBG) during home use. Methods: Fifty-one subjects with diabetes were enrolled in a prospective multicenter study. Subjects wore 1 sensor for 7-day use and participated in one 12-hour in-clinic session on day 1, 4, or 7 to collect YSI reference venous glucose every 15 minutes and capillary SMBG test every 30 minutes. Carbohydrate consumption and insulin dosing and timing were manipulated to obtain data in low and high glucose ranges. Results: In comparison with the laboratory reference method (n = 2,263) the system provided a mean and median absolute relative differences (ARD) of 9.0% and 7.0%, respectively. The mean absolute difference for CGM was 6.4 mg/dL when the YSIs were within hypoglycemia ranges (≤ 70 mg/dL). The percentage in the clinically accurate Clarke error grid A zone was 92.4% and in the benign error B zone was 7.1%. Majority of the sensors (73%) had an aggregated MARD in reference to YSI ≤ 10%. The MARD of CGM-SMBG for home use was 11.3%. Conclusions: The study showed that the point and rate accuracy, clinical accuracy, reliability, and consistency over the duration of wear and across glycemic ranges were superior to current commercial real-time CGM systems. The performance of this CGM is reaching that of a self-monitoring blood glucose meter in real use environment.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3