Dexcom G4AP: An Advanced Continuous Glucose Monitor for the Artificial Pancreas

Author:

Garcia Arturo1,Rack-Gomer Anna Leigh1,Bhavaraju Naresh C.1,Hampapuram Haripriyan1,Kamath Apurv1,Peyser Thomas1,Facchinetti Andrea2,Zecchin Chiara2,Sparacino Giovanni2,Cobelli Claudio2

Affiliation:

1. Dexcom Inc., San Diego, California

2. Department of Information Engineering, University of Padova, Padova, Italy

Abstract

Input from continuous glucose monitors (CGMs) is a critical component of artificial pancreas (AP) systems, but CGM performance issues continue to limit progress in AP research. While G4 PLATINUM has been integrated into AP systems around the world and used in many successful AP controller feasibility studies, this system was designed to address the needs of ambulatory CGM users as an adjunctive use system. Dexcom and the University of Padova have developed an advanced CGM, called G4AP, to specifically address the heightened performance requirements for future AP studies. The G4AP employs the same sensor and transmitter as the G4 PLATINUM but contains updated denoising and calibration algorithms for improved accuracy and reliability. These algorithms were applied to raw data from an existing G4 PLATINUM clinical study using a simulated prospective procedure. The results show that mean absolute relative difference (MARD) compared with venous plasma glucose was improved from 13.2% with the G4 PLATINUM to 11.7% with the G4AP. Accuracy improvements were seen over all days of sensor wear and across the plasma glucose range (40–400 mg/dl). The greatest improvements occurred in the low glucose range (40–80 mg/dl), in euglycemia (80–120 mg/dl), and on the first day of sensor use. The percentage of sensors with a MARD <15% increased from 69% to 80%. Metrics proposed by the AP research community for addressing specific AP requirements were also computed. The G4AP consistently exhibited improved sensor performance compared with the G4 PLATINUM. These improvements are expected to enable further advances in AP research.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3