First Outpatient Clinical Trial of a Full Closed-Loop Artificial Pancreas System in South America

Author:

Garelli Fabricio12,Fushimi Emilia12ORCID,Rosales Nicolás12,Arambarri Delfina1,Mendoza Leandro1,Serafini María Cecilia13,Moscoso-Vásquez Marcela24,Stasi Marianela5,Duette Patricia5,García-Arabehety Julia5,Giunta Javier Nicolás5,De Battista Hernán12,Sánchez-Peña Ricardo24ORCID,Grosembacher Luis5

Affiliation:

1. Grupo de Control Aplicado, Instituto LEICI (UNLP-CONICET), Facultad de Ingeniería, Universidad Nacional de La Plata, La Plata, Argentina

2. Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina

3. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Buenos Aires, Argentina

4. Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina

5. Hospital Italiano de Buenos Aires, Buenos Aires, Argentina

Abstract

Background: The first two studies of an artificial pancreas (AP) system carried out in Latin America took place in 2016 (phase 1) and 2017 (phase 2). They evaluated a hybrid algorithm from the University of Virginia (UVA) and the automatic regulation of glucose (ARG) algorithm in an inpatient setting using an AP platform developed by the UVA. The ARG algorithm does not require carbohydrate (CHO) counting and does not deliver meal priming insulin boluses. Here, the first outpatient trial of the ARG algorithm using an own AP platform and doubling the duration of previous phases is presented. Method: Phase 3 involved the evaluation of the ARG algorithm in five adult participants (n = 5) during 72 hours of closed-loop (CL) and 72 hours of open-loop (OL) control in an outpatient setting. This trial was performed with an own AP and remote monitoring platform developed from open-source resources, called InsuMate. The meals tested ranged its CHO content from 38 to 120 g and included challenging meals like pasta. Also, the participants performed mild exercise (3-5 km walks) daily. The clinical trial is registered in ClinicalTrials.gov with identifier: NCT04793165. Results: The ARG algorithm showed an improvement in the time in hyperglycemia (52.2% [16.3%] OL vs 48.0% [15.4%] CL), time in range (46.9% [15.6%] OL vs 50.9% [14.4%] CL), and mean glucose (188.9 [25.5] mg/dl OL vs 186.2 [24.7] mg/dl CL) compared with the OL therapy. No severe hyperglycemia or hypoglycemia episodes occurred during the trial. The InsuMate platform achieved an average of more than 95% of the time in CL. Conclusion: The results obtained demonstrated the feasibility of outpatient full CL regulation of glucose levels involving the ARG algorithm and the InsuMate platform.

Funder

Universidad Nacional de La Plata

fundación cellex

Ministerio de Ciencia y Tecnología

Fundación Nuria

Fondo para la Investigación Científica y Tecnológica

Consejo Nacional de Investigaciones Científicas y Técnicas

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3