Affiliation:
1. Department of Chemical Engineering, University of California, Santa Barbara, CA, USA
2. William Sansum Diabetes Center, Santa Barbara, CA, USA
3. The first 2 authors contributed equally to this study
Abstract
Background: Early detection of exercise in individuals with type 1 diabetes mellitus (T1DM) may allow changes in therapy to prevent hypoglycemia. Currently there is limited experience with automated methods that detect the onset and end of exercise in this population. We sought to develop a novel method to quickly and reliably detect the onset and end of exercise in these individuals before significant changes in blood glucose (BG) occur. Methods: Sixteen adults with T1DM were studied as outpatients using a diary, accelerometer, heart rate monitor, and continuous glucose monitor for 2 days. These data were used to develop a principal component analysis based exercise detection method. Subjects also performed 60 and 30 minute exercise sessions at 30% and 50% predicted heart rate reserve (HRR), respectively. The detection method was applied to the exercise sessions to determine how quickly the detection of start and end of exercise occurred relative to change in BG. Results: Mild 30% HRR and moderate 50% HRR exercise onset was identified in 6 ± 3 and 5 ± 2 (mean ± SD) minutes, while completion was detected in 3 ± 8 and 6 ± 5 minutes, respectively. BG change from start of exercise to detection time was 1 ± 6 and −1 ± 3 mg/dL, and, from the end of exercise to detection time was 6 ± 4 and −17 ± 13 mg/dL, respectively, for the 2 exercise sessions. False positive and negative ratios were 4 ± 2% and 21 ± 22%. Conclusions: The novel method for exercise detection identified the onset and end of exercise in approximately 5 minutes, with an average BG change of only −6 mg/dL.
Subject
Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献