Automatic Data Processing to Achieve a Safe Telemedical Artificial Pancreas

Author:

Hernando M. Elena12,García-Sáez Gema12,Martínez-Sarriegui Iñaki12,Rodríguez-Herrero Agustín12,Pérez-Gandía Carmen12,Rigla Mercedes23,de Leiva Alberto23,Capel Ismael3,Pons Belén3,Gómez Enrique J.12

Affiliation:

1. Bioengineering and Telemedicine Group, Polytechnic University of Madrid, Madrid, Spain

2. CIBER-BBN, Network of Research for Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain

3. Endocrinology Department, Hospital de Sant Pau, Barcelona, Spain

Abstract

Background: The use of telemedicine for diabetes care has evolved over time, proving that it contributes to patient self-monitoring, improves glycemic control, and provides analysis tools for decision support. The timely development of a safe and robust ambulatory artificial pancreas should rely on a telemedicine architecture complemented with automatic data analysis tools able to manage all the possible high-risk situations and to guarantee the patient's safety. Methods: The Intelligent Control Assistant system (INCA) telemedical artificial pancreas architecture is based on a mobile personal assistant integrated into a telemedicine system. The INCA supports four control strategies and implements an automatic data processing system for risk management (ADP-RM) providing short-term and medium-term risk analyses. The system validation comprises data from 10 type 1 pump-treated diabetic patients who participated in two randomized crossover studies, and it also includes in silico simulation and retrospective data analysis. Results: The ADP-RM short-term risk analysis prevents hypoglycemic events by interrupting insulin infusion. The pump interruption has been implemented in silico and tested for a closed-loop simulation over 30 hours. For medium-term risk management, analysis of capillary blood glucose notified the physician with a total of 62 alarms during a clinical experiment (56% for hyperglycemic events). The ADP-RM system is able to filter anomalous continuous glucose records and to detect abnormal administration of insulin doses with the pump. Conclusions: Automatic data analysis procedures have been tested as an essential tool to achieve a safe ambulatory telemedical artificial pancreas, showing their ability to manage short-term and medium-term risk situations.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3