Use of Case-Based Reasoning to Enhance Intensive Management of Patients on Insulin Pump Therapy

Author:

Schwartz Frank L.1,Shubrook Jay H.1,Marling Cynthia R.2

Affiliation:

1. Appalachian Rural Health Institute Diabetes and Endocrine Center, Ohio University College of Osteopathic Medicine, Ohio University, Athens, Ohio

2. School of Electrical Engineering and Computer Science, Russ College of Engineering and Technology, Ohio University, Athens, Ohio

Abstract

Background: This study was conducted to develop case-based decision support software to improve glucose control in patients with type 1 diabetes mellitus (T1DM) on insulin pump therapy. While the benefits of good glucose control are well known, achieving and maintaining good glucose control remains a difficult task. Case-based decision support software may assist by recalling past problems in glucose control and their associated therapeutic adjustments. Methods: Twenty patients with T1DM on insulin pumps were enrolled in a 6-week study. Subjects performed self-glucose monitoring and provided daily logs via the Internet, tracking insulin dosages, work, sleep, exercise, meals, stress, illness, menstrual cycles, infusion set changes, pump problems, hypoglycemic episodes, and other events. Subjects wore a continuous glucose monitoring system at weeks 1, 3, and 6. Clinical data were interpreted by physicians, who explained the relationship between life events and observed glucose patterns as well as treatment rationales to knowledge engineers. Knowledge engineers built a prototypical system that contained cases of problems in glucose control together with their associated solutions. Results: Twelve patients completed the study. Fifty cases of clinical problems and solutions were developed and stored in a case base. The prototypical system detected 12 distinct types of clinical problems. It displayed the stored problems that are most similar to the problems detected, and offered learned solutions as decision support to the physician. Conclusions: This software can screen large volumes of clinical data and glucose levels from patients with T1DM, identify clinical problems, and offer solutions. It has potential application in managing all forms of diabetes.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3