A Benchmark Data Set for Model-Based Glycemic Control in Critical Care

Author:

Chase J. Geoffrey1,LeCompte Aaron1,Shaw Geoffrey M.2,Blakemore Amy1,Wong Jason1,Lin Jessica3,Hann Christopher E.1

Affiliation:

1. University of Canterbury, Centre for Bio-Engineering, Department of Mechanical Engineering, Christchurch, New Zealand

2. Department of Intensive Care, Christchurch Hospital, University of Otago School of Medicine, Christchurch, New Zealand

3. University of Otago School of Medicine, Christchurch, New Zealand

Abstract

Background: Hyperglycemia is prevalent in critical care. That tight control saves lives is becoming more clear, but the “how” and “for whom” in repeating the initial results remain elusive. Model-based methods can provide tight, patient-specific control, as well as providing significant insight into the etiology and evolution of this condition. However, it is still often difficult to compare results due to lack of a common benchmark. This article puts forward a benchmark data set for critical care glycemic control in a medical intensive care unit (ICU). Based on clinical patient data from SPecialized Relative Insulin and Nutrition Tables (SPRINT) studies, it provides a benchmark for comparing and analyzing performance in model-based glycemic control. Methods: Data from 20 of the first 150 postpilot patients treated under SPRINT are presented. All patients had longer than a 5-day length of stay (LoS) in the Christchurch ICU. The benchmark data set matches overall patient data and glycemic control results for the entire cohort and this particular LoS >5-day group. The mortality outcome ( n = 3, 15%) also matches SPRINT results for this patient group. Results: Data cover 20 patients and 6372 total patient hours with an average of 339.4 hours per patient. It includes insulin and nutrition inputs along with 4182 blood glucose measurements at an average of 224.3 measurements per patient, averaging a measurement approximately every 1.5 hours (16 per day). Data are available via download in a Microsoft Excel format. A series of cumulative distribution functions and tables are used to summarize data in this article. Conclusion: Model-based methods can provide tighter, more adaptable “one method fits all” solutions using methods that enable patient-specific modeling and control. A benchmark data set will enable easier model and protocol development for groups lacking clinical data, as well as providing a benchmark to compare results of different protocols on a single (virtual) cohort based on real clinical data.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3