Data Entry Errors and Design for Model-Based Tight Glycemic Control in Critical Care

Author:

Ward Logan1,Steel James1,Le Compte Aaron1,Evans Alicia1,Tan Chia-Siong1,Penning Sophie2,Shaw Geoffrey M.3,Desaive Thomas2,Chase J. Geoffrey1

Affiliation:

1. Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand

2. Cardiovascular Research Centre, University of Liege, Liege, Belgium

3. Department of Intensive Care, Christchurch Hospital, Christchurch School of Medicine, University of Otago, Christchurch, New Zealand

Abstract

Introduction: Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. Model-based methods and computerized protocols offer the opportunity to improve TGC quality but require human data entry, particularly of blood glucose (BG) values, which can be significantly prone to error. This study presents the design and optimization of data entry methods to minimize error for a computerized and model-based TGC method prior to pilot clinical trials. Method: To minimize data entry error, two tests were carried out to optimize a method with errors less than the 5%-plus reported in other studies. Four initial methods were tested on 40 subjects in random order, and the best two were tested more rigorously on 34 subjects. The tests measured entry speed and accuracy. Errors were reported as corrected and uncorrected errors, with the sum comprising a total error rate. The first set of tests used randomly selected values, while the second set used the same values for all subjects to allow comparisons across users and direct assessment of the magnitude of errors. These research tests were approved by the University of Canterbury Ethics Committee. Results: The final data entry method tested reduced errors to less than 1–2%, a 60–80% reduction from reported values. The magnitude of errors was clinically significant and was typically by 10.0 mmol/liter or an order of magnitude but only for extreme values of BG < 2.0 mmol/liter or BG > 15.0–20.0 mmol/liter, both of which could be easily corrected with automated checking of extreme values for safety. Conclusions: The data entry method selected significantly reduced data entry errors in the limited design tests presented, and is in use on a clinical pilot TGC study. The overall approach and testing methods are easily performed and generalizable to other applications and protocols.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3