The Bio-inspired Artificial Pancreas for Type 1 Diabetes Control in the Home: System Architecture and Preliminary Results

Author:

Herrero Pau1ORCID,El-Sharkawy Mohamed1,Daniels John1,Jugnee Narvada2,Uduku Chukwuma N.2,Reddy Monika2,Oliver Nick2,Georgiou Pantelis1

Affiliation:

1. Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, UK

2. Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, UK

Abstract

Background: Artificial pancreas (AP) technology has been proven to improve glucose and patient-centered outcomes for people with type 1 diabetes (T1D). Several approaches to implement the AP have been described, clinically evaluated, and in one case, commercialized. However, none of these approaches has shown a clear superiority with respect to others. In addition, several challenges still need to be solved before achieving a fully automated AP that fulfills the users’ expectations. We have introduced the Bio-inspired Artificial Pancreas (BiAP), a hybrid adaptive closed-loop control system based on beta-cell physiology and implemented directly in hardware to provide an embedded low-power solution in a dedicated handheld device. In coordination with the closed-loop controller, the BiAP system incorporates a novel adaptive bolus calculator which aims at improving postprandial glycemic control. This paper focuses on the latest developments of the BiAP system for its utilization in the home environment. Methods: The hardware and software architectures of the BiAP system designed to be used in the home environment are described. Then, the clinical trial design proposed to evaluate the BiAP system in an ambulatory setting is introduced. Finally, preliminary results corresponding to two participants enrolled in the trial are presented. Results: Apart from minor technical issues, mainly due to wireless communications between devices, the BiAP system performed well (~88% of the time in closed-loop) during the clinical trials conducted so far. Preliminary results show that the BiAP system might achieve comparable glycemic outcomes to the existing AP systems (~73% time in target range 70-180 mg/dL). Conclusion: The BiAP system is a viable platform to conduct ambulatory clinical trials and a potential solution for people with T1D to control their glucose control in a home environment.

Funder

Wellcome Trust

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3