A Novel Algorithm for Prediction and Detection of Hypoglycemia Based on Continuous Glucose Monitoring and Heart Rate Variability in Patients With Type 1 Diabetes

Author:

Cichosz Simon Lebech12,Frystyk Jan1,Hejlesen Ole K.2,Tarnow Lise3,Fleischer Jesper1

Affiliation:

1. Department of Endocrinology and Internal Medicine and Medical Research Laboratory, Aarhus University Hospital, Aarhus, Denmark

2. Department of Health Science and Technology, Aalborg University, Aalborg, Denmark

3. Department of Clinical Epidemiology, Aarhus University and Nordsjaellands Hospitaler Hilleroed, Aarhus, Denmark

Abstract

Background: Hypoglycemia is a common and serious side effect of insulin therapy in patients with diabetes. Early detection and prediction of hypoglycemia may improve treatment and avoidance of serious complications. Continuous glucose monitoring (CGM) has previously been used for detection of hypoglycemia, but with a modest accuracy. Therefore, our aim was to investigate whether a novel algorithm that adds information of the complex dynamic/pattern of heart rate variability (HRV) could improve the accuracy of hypoglycemia as detected by a CGM device. Methods: Data from 10 patients with type 1 diabetes studied during insulin-induced hypoglycemia were obtained. Blood glucose samples were used as reference. HRV patterns and CGM data were combined in a mathematical prediction algorithm. Detection of hypoglycemic periods, performed by the algorithm, was treated as a pattern recognition problem and features/patterns derived from HRV and CGM prior to each blood glucose sample were used to decide if that particular point in time was below the hypoglycemic threshold of 3.9 mmol/L. Results: A total of 903 samples were analyzed by the novel algorithm, which yielded a sensitivity of 79% and a specificity of 99%. The algorithm was able to detect 16/16 hypoglycemic events with no false positives and had a lead time of 22 minutes as compared to the CGM device. Conclusions: Detection accuracy and lead time were significantly improved by the novel algorithm compared to that of CGM alone.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3