Pilot Evaluation of a Prototype Critical Care Blood Glucose Monitor in Normal Volunteers

Author:

Torjman Marc C.1,Goldberg Michael E.1,Littman Jeffrey J.1,Hirsh Robert A.1,Dellinger Richard P.2

Affiliation:

1. Department of Anesthesiology, Cooper University Hospital, The Robert Wood Johnson Medical School-UMDNJ, Camden, New Jersey

2. Department of Medicine, Division of Critical Care Medicine, Cooper University Hospital, The Robert Wood Johnson Medical School, UMDNJ, Camden, New Jersey

Abstract

Background: Availability of a highly accurate in-hospital automated blood glucose (BG) monitor could facilitate implementation of intensive insulin therapy protocols through effective titration of insulin therapy, improved BG control, and avoidance of hypoglycemia. We evaluated a functional prototype BG monitor designed to perform frequent automated blood sampling for glucose monitoring. Methods: Sixteen healthy adult volunteer subjects had intravenous catheter insertions in a forearm or hand vein and were studied for 8 hours. The prototype monitor consisted of an autosampling unit with a precise computer-controlled reversible syringe pump and a glucose analytical section. BG was referenced against a Yellow Springs Instrument (YSI) laboratory analyzer. Sampling errors for automated blood draws were assessed by calculating the percent of failed draws, and BG data were analyzed using the Bland and Altman technique. Results: Out of 498 total sample draws, unsuccessful draws were categorized as follow: 11 (2.2%) were due to autosampler technical problems, 21 (4.2%) were due to catheter-related failures, and 37 (7.4%) were BG meter errors confirmed by a glucometer-generated error code. Blood draw difficulties or failures related to the catheter site (e.g., catheter occlusion or vein collapse) occurred in 6/15 (40%) subjects. Mean BG bias versus YSI was 0.20 ± 12.6 mg/dl, and mean absolute relative difference was 10.4%. Conclusions: Automated phlebotomy can be performed in healthy subjects using this prototype BG monitor. The BG measurement technology had suboptimal accuracy based on a YSI reference. A more accurate BG point-of-care testing meter and strip technology have been incorporated into the future version of this monitor. Development of such a monitor could alleviate the burden of frequent BG testing and reduce the risk of hypoglycemia in patients on insulin therapy.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Literature Review on Point-of-Care Testing (August 2009-December 2010);Point of Care: The Journal of Near-Patient Testing & Technology;2011-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3