Hypoglycemia-Associated Electroencephalogram and Electrocardiogram Changes Appear Simultaneously

Author:

Larsen Anine1,Højlund Kurt2,Poulsen Mikael Kjær2,Madsen Rasmus Elsborg1,Juhl Claus B.13

Affiliation:

1. Hypo-Safe, Lyngby, Denmark

2. Department of Endocrinology, Odense University Hospital, Odense, Denmark

3. Department of Medicine, Sydvestjysk Sygehus, Esbjerg, Denmark

Abstract

Background: Tight glycemic control in type 1 diabetes mellitus (T1DM) may be accomplished only if severe hypoglycemia can be prevented. Biosensor alarms based on the body's reactions to hypoglycemia have been suggested. In the present study, we analyzed three lead electrocardiogram (ECG) and single-channel electroencephalogram (EEG) in T1DM patients during hypoglycemia. Materials and Methods: Electrocardiogram and EEG recordings during insulin-induced hypoglycemia in nine patients were used to assess the presence of ECG changes by heart rate, and estimates of QT interval (QTc) and time from top of T wave to end of T wave corrected for heartbeat interval and EEG changes by extraction of the power of the signal in the delta, theta, and alpha bands. These six features were assessed continuously to determine the time between changes and severe hypoglycemia. Results: QT interval changes and EEG theta power changes were detected in six and eight out of nine subjects, respectively. Rate of false positive calculations was one out of nine subjects for QTc and none for EEG theta power. Detection time medians (i.e., time from significant changes to termination of experiments) was 13 and 8 min for the EEG theta power and QTc feature, respectively, with no significant difference (p = .25). Conclusions: Severe hypoglycemia is preceded by changes in both ECG and EEG features in most cases. Electroencephalogram theta power may be superior with respect to timing, sensitivity, and specificity of severe hypoglycemia detection. A multiparameter algorithm that combines data from different biosensors might be considered.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3