Risk Factors for Nondiagnostic Imaging in a Real-World Deployment of Artificial Intelligence Diabetic Retinal Examinations in an Integrated Health care System: Maximizing Workflow Efficiency Through Predictive Dilation

Author:

Shou Benjamin L.1ORCID,Venkatesh Kesavan2,Chen Chang3,Ghidey Ronel3,Lee Jae Hyoung3ORCID,Wang Jiangxia3,Channa Roomasa4,Wolf Risa M.5,Abramoff Michael D.6ORCID,Liu T. Y. Alvin7

Affiliation:

1. School of Medicine, The Johns Hopkins University, Baltimore, MD, USA

2. Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA

3. Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, USA

4. Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA

5. Department of Pediatrics, Division of Pediatric Endocrinology, The Johns Hopkins University, Baltimore, MD, USA

6. Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA

7. Wilmer Eye Institute, The Johns Hopkins University, Baltimore, MD, USA

Abstract

Objective: In the pivotal clinical trial that led to Food and Drug Administration De Novo “approval” of the first fully autonomous artificial intelligence (AI) diabetic retinal disease diagnostic system, a reflexive dilation protocol was used. Using real-world deployment data before implementation of reflexive dilation, we identified factors associated with nondiagnostic results. These factors allow a novel predictive dilation workflow, where patients most likely to benefit from pharmacologic dilation are dilated a priori to maximize efficiency and patient satisfaction. Methods: Retrospective review of patients who were assessed with autonomous AI at Johns Hopkins Medicine (8/2020 to 5/2021). We constructed a multivariable logistic regression model for nondiagnostic results to compare characteristics of patients with and without diagnostic results, using adjusted odds ratio (aOR). P < .05 was considered statistically significant. Results: Of 241 patients (59% female; median age = 59), 123 (51%) had nondiagnostic results. In multivariable analysis, type 1 diabetes (T1D, aOR = 5.82, 95% confidence interval [CI]: 1.45-23.40, P = .01), smoking (aOR = 2.86, 95% CI: 1.36-5.99, P = .005), and age (every 10-year increase, aOR = 2.12, 95% CI: 1.62-2.77, P < .001) were associated with nondiagnostic results. Following feature elimination, a predictive model was created using T1D, smoking, age, race, sex, and hypertension as inputs. The model showed an area under the receiver-operator characteristics curve of 0.76 in five-fold cross-validation. Conclusions: We used factors associated with nondiagnostic results to design a novel, predictive dilation workflow, where patients most likely to benefit from pharmacologic dilation are dilated a priori. This new workflow has the potential to be more efficient than reflexive dilation, thus maximizing the number of at-risk patients receiving their diabetic retinal examinations.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3