Glucose Variability Analysis in Two Large-Scale and Real-World Data Sets of Open-Source Automated Insulin Delivery Systems

Author:

Cooper Drew1ORCID,Reinhold Bernd2,Shahid Arsalan3ORCID,Lewis Dana M.4ORCID

Affiliation:

1. Institute of Medical Informatics, Charité—Universitätsmedizin Berlin, Berlin, Germany

2. Eddimed, Stuttgart, Germany

3. CeADAR, Ireland’s Centre for Applied AI, University College Dublin, Dublin, Ireland

4. OpenAPS, Seattle, WA, USA

Abstract

Background: Open-source automated insulin delivery (OS-AID) systems combine commercially available insulin pumps and continuous glucose monitors with open-source algorithms to automate insulin dosing for people with insulin-requiring diabetes. Two data sets (OPEN and the OpenAPS Data Commons) contain anonymized OS-AID user data. Methods: We assessed glycemic variability (GV) outcomes in the OPEN data set and characterized it alongside a comparison to the n = 122 version of the OpenAPS Data Commons. Glucose data are analyzed using an unsupervised machine learning algorithm for clustering, and GV metrics are quantified using statistical tests for distribution comparison. Demographic data are also analyzed quantitatively. Results: The n = 75 OPEN data set contains 36 827 days worth of data. Mean TIR is 82.08% (TOR < 70: 3.66%; TOR > 180: 14.3%). LBGI ( P < .05) differs by gender whereas HBGI distributions are similar ( P > .05). GV metrics (except TOR < 70, LBGI) show a statistically significant difference ( P < .05) between data sets. Conclusions: Both the OPEN and OpenAPS Data Commons data sets show TOR < 70, TIR, and TOR > 180 within recommended goals, adding additional evidence of real-world efficacy of OS-AID. Future research should evaluate in more detail potential data set differences and relationships between individual patterns of user behaviors and GV outcomes.

Funder

European Commission’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie Action Research and Innovation Staff Exchange

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference22 articles.

1. USFDA. FDA Roundup: January 24, 2023. U.S. Food and Drugs Administration. https://www.fda.gov/news-events/press-announcements/fda-roundup-january-24-2023. Published January 24, 2023. Accessed February 13, 2023.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3