Using Continuous Glucose Monitoring Data and Detrended Fluctuation Analysis to Determine Patient Condition

Author:

Thomas Felicity1,Signal Matthew1,Chase J. Geoffrey1

Affiliation:

1. Department of Mechanical Engineering, University of Canterbury, New Zealand

Abstract

Patients admitted to critical care often experience dysglycemia and high levels of insulin resistance, various intensive insulin therapy protocols and methods have attempted to safely normalize blood glucose (BG) levels. Continuous glucose monitoring (CGM) devices allow glycemic dynamics to be captured much more frequently (every 2-5 minutes) than traditional measures of blood glucose and have begun to be used in critical care patients and neonates to help monitor dysglycemia. In an attempt to obtain a better insight relating biomedical signals and patient status, some researchers have turned toward advanced time series analysis methods. In particular, Detrended Fluctuation Analysis (DFA) has been a topic of many recent studies in to glycemic dynamics. DFA investigates the “complexity” of a signal, how one point in time changes relative to its neighboring points, and DFA has been applied to signals like the inter-beat-interval of human heartbeat to differentiate healthy and pathological conditions. Analyzing the glucose metabolic system with such signal processing tools as DFA has been enabled by the emergence of high quality CGM devices. However, there are several inconsistencies within the published work applying DFA to CGM signals. Therefore, this article presents a review and a “how-to” tutorial of DFA, and in particular its application to CGM signals to ensure the methods used to determine complexity are used correctly and so that any relationship between complexity and patient outcome is robust.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3