The Financial Impact of Inaccurate Blood Glucose Monitoring Systems

Author:

Fortwaengler Kurt1,Campos-Náñez Enrique2,Parkin Christopher G.3,Breton Marc D.2

Affiliation:

1. Roche Diabetes Care GmbH, Mannheim, Germany

2. Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA

3. CGParkin Communications, Inc, Boulder City, NV, USA

Abstract

Objective: An in silico study of type 1 diabetes (T1DM) patients utilized the UVA-PADOVA Type 1 Diabetes Simulator to assess the effect of patient blood glucose monitoring (BGM) system accuracy on clinical outcomes. We applied these findings to assess the financial impact of BGM system inaccuracy. Methods: The study included 43 BGM systems previously assessed for accuracy according to ISO 15197:2003 and ISO 15197:2013 criteria. Glycemic responses for the 100 in silico adult T1DM subjects were generated, using each meter. Changes in estimated HbA1c, severe hypoglycemic events, and health care resource utilization were computed for each simulation. The HbA1c Translator modeling approach was used to calculate the financial impact of these changes. Results: The average cost of inaccuracy associated with the entire group of BGM systems was £155 per patient year (PPY). The average additional cost of BGM systems not meeting the ISO 15197:2003 standard was an estimated £178 PPY more than an average system that fulfills the standard and an estimated £235 PPY more than an average system that appears to meet the ISO 15197:2013 standard. Conclusion: There is a clear relationship between BGM system accuracy and cost, with the highest costs being associated with BGM systems not meeting the ISO 15197:2003 standard. Lower costs are associated with systems meeting the ISO 15197:2013 system accuracy criteria. Using BGM systems that meet the system accuracy criteria of the ISO 15197:2013 standard can help reduce the clinical and financial consequences associated with inaccuracy of BGM devices.

Funder

Roche Diabetes Care GmbH

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3