Users’ search performance prediction in cross-device search

Author:

Wu Dan12,Dong Jing3ORCID,Yuan Fang4,Cheng Lei1

Affiliation:

1. School of Information Management, Wuhan University, China

2. The Center for Studies of the Human-Computer Interaction and User Behavior, Wuhan University, China

3. School of Information Management, Central China Normal University, China

4. Sun Yat-sen University Library, China

Abstract

Users’ search performance indicates the effectiveness and success with which users’ information needs are met, which is calculated based on the relevance judgment by users themselves. This study proposed to explore the prediction of users’ search performance in the context of cross-device search. A user experiment was performed to collect users’ relevance judgments and search behaviors in cross-device search. Based on users’ relevance judgments, users’ search performance was evaluated by calculating the percentage of valid clicks, effective search time, nDCG@n, and satisfaction. A simple linear regression model was adopted to train the prediction model. The final results showed that a combination of users’ search performance in pre-switch sessions and their search behavior in post-switch sessions can attain the best prediction accuracy. Important features to predict users’ search performance in cross-device search shed light on improving search systems to aid users in completing the task efficiently.

Publisher

SAGE Publications

Subject

Library and Information Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3