Energy and exergy analysis and optimum working conditions of a renewable energy system using a transient systems simulation program

Author:

Abu-Hamdeh Nidal H12ORCID,Alnefaie Khalid A2

Affiliation:

1. Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah, Saudi Arabia

2. Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

A solar tri-generation system comprises of photovoltaic thermal collectors that are used for the production of electrical power and domestic hot water simultaneously. This study presents the performance analysis of a micro-solar tri-generation system that fulfills the requirements of an off-grid single-family lodging. The main functions of this system include domestic hot water, electrical power, and cooling power production. A set of five photovoltaic thermal panels were modeled together. The electrical power generated was stored in a battery, while the hot water generated was passed through a flow diverting valve. This valve directed some of the hot water to an absorption chiller, while the remaining portion was sent to an insulated thermal storage tank for later use. Energy and exergy analyses were performed to evaluate the extracted energy’s quality and efficiency. The overall thermal energy efficiency achieved was 50.53%. The extracted energy in the form of hot water was 3777.5 W. The electrical power generated was 2984.6 W, which was sufficient for the small single-family lodging. The coefficient of performance of the absorption chiller was found to be 0.6152. The exergy efficiency achieved was 36.88%. The exergy extracted by hot water was 234.3 W, while the electrical exergy generated was 2984.6 W. The exergy extracted during refrigeration was found to be 91.22 W. Furthermore, varying wind speeds and tilt angles affected both the energy and exergy efficiencies. The tilt angle must be kept at less than 45°, and the optimum wind speed was determined to be 35 km/h.

Funder

King Abdulaziz University

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3