Origin and paleoenvironment of organic matter in the Wufeng–Longmaxi shales in the northeastern Sichuan basin

Author:

Wang Chaoyong12,Dong Zaitian12ORCID,Fu Xuehai12,Hu Xin12,Li Zhen3

Affiliation:

1. Key Laboratory of CBM Resources and Dynamic Accumulation Process, China University of Mining and Technology, Ministry of Education, Xuzhou, China

2. School of Resources and Earth Science, China University of Mining and Technology, Xuzhou, China

3. Shanxi Key Laboratory of Resources, Environment and Disaster Monitoring, Taiyuan, China

Abstract

The formation environment and preservation conditions of sedimentary organic matter (OM) play an important role in the accumulation of shale gas. In the present study, inorganic and organic geochemical data were analyzed to determine the origin and preservation environment of sedimentary OM in the Wc-1 well of the Wufeng–Longmaxi (WF–LMX) Formation in northeastern Chongqing, China. In a biomarkers analysis, the numerical characteristics of n-alkanes ( n-C17/ n-C31>4.0), tricyclic terpenes (C23TT/C30H>1.0), and steranes (C27/C29St>1.0) suggested that the main origin of OM in the black shale was planktonic algae. High values of P/Ti and BaXS in the paleoproductivity indices suggested that primary productivity in the WF–LMX Formation was relatively high, peaking in the lower LMX Formation. Relative enrichment in U, V, and Mo, and the changing trends in V/(V+Ni) and Ni/Co suggested that the redox conditions for the bottom water, which changed from the WF Formation to the lower and upper LMX Formation, were oxic/dysoxic to anoxic and dysoxic, respectively. The relationship between total organic carbon and the above indexes indicates that different key factors controlled OM enrichment in the WF–LMX Formation. In the WF Formation, oxic bottom water was not conducive to the preservation of sedimentary OM. In the lower LMX Formation, the highest paleoproductivity and anoxic bottom water conditions promoted the enrichment and preservation of sedimentary OM. In the upper LMX Formation, excessive terrigenous inputs and relatively low paleoproductivity limited the enrichment of sedimentary OM.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3