Quantifying the effects of different hydrocarbon charging periods on reservoir quality: A case study of the Upper Wuerhe Formation, Junggar Basin, NW China

Author:

Huang Linjun1,Wang Zecheng1,Pan Shuxin1,Wu Haiguang2ORCID,Xu Duonian1,Jiang Shuai3,Kang Xun4

Affiliation:

1. Research Institute of Petroleum Exploration and Development Northwest Branch, Lanzhou, China

2. School of Earth Sciences, Northeast Petroleum University, Daqing, China

3. Shengli Xinda New Materials Group Corporation, Dongying, China

4. School of Geosciences and Info-Physics, Central South University, Changsha, China

Abstract

Mineral dissolution and precipitation is an important factor affecting pore genesis and hydrocarbon accumulation in sedimentary basins. Differential diagenetic processes at different hydrocarbon charging periods generally cause disparate effects on reservoir quality, which is important for reservoir evaluation and prediction. Focusing on this question, petrologic work, quantitative analysis on reservoir quality including porosity, permeability, and micro-scale X-ray computer tomography were conducted in conglomeratic reservoirs of the late Permian Upper Wuerhe Formation (P3 w) in the Shawan Sag, Junggar Basin, northwestern China. The results show that tuff and volcanic debris are enriched in the formation. Laumontites generally occur as cements in the reservoirs due to the alteration of volcanic materials and small amounts of early-stage calcite precipitated during eodiagenesis. Partial laumontite and calcite cements, as well as some debris and feldspar, are differentially dissolved due to differential hydrocarbon charging. During the continuous compaction of the reservoir, first-stage hydrocarbon charging occurred in the middle Jurassic when primary porosity almost disappeared. Hydrocarbon charging inhibited the precipitation of laumontite and calcite, promoting their dissolution. Second-stage hydrocarbon charging in the early Cretaceous further caused more extensive dissolution of laumontite and calcite, forming more than 70% secondary porosity. Authigenic quartz, kaolinite, and late-stage calcite are precipitated as the associated minerals of laumontite dissolution. This study presents the significance of reservoir reconstruction after hydrocarbon charging and suggests prospective hydrocarbon accumulations in deeply buried clastic reservoirs when hydrocarbon supply is sufficient from source rocks.

Funder

Fundamental and Forward-looking Major Project of Petrochina

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3