Determining the present-day in-situ stresses of tight-oil sandstones by conventional logs: An approach in the Triassic Yanchang Formation, southern Ordos Basin

Author:

Lyu Wenya12ORCID,Hui Chen13,Zeng Lianbo12,Wang Leifei4,Fan Jianming5,Liu Yanxiang1,Liu Jian5,Wang Haonan1,Zhe Mao1

Affiliation:

1. College of Geosciences, China University of Petroleum, Beijing, China

2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, China

3. China National Offshore Oil Corporation International Limited, Beijing, China

4. Longdong Oil and Gas Development Branch Company of Changqing Oilfield Company, PetroChina, Qingyang, China

5. Petroleum Exploration and Production Research Institute, Changqing Oilfield Company, PetroChina, Xi’an, Shaanxi, China

Abstract

The present-day in-situ stresses affect the drilling design, well pattern deployment, well completion modification, hydraulic fracturing and water injection of tight-oil sandstones. The measurement data of these stresses are commonly unavailable because of their high costs and limited core samples, therefore employing conventional logs for these stress determination is imperative for tight-oil sandstones. Firstly, the suitable calculation models for the present-day in-situ stress calculation by conventional logs were selected according to the geological characteristics of the sixth member of the Yanchang Formation (Chang 6) in Heshui area of the southern Ordos Basin, China. Then, the dynamic rock mechanical parameters were determined by conventional logs, and corrected by the static rock mechanical parameters obtained from the triaxial rock mechanical tests. Moreover, the pore fluid pressure was determined by the empirical formula method. Finally, the maximum and minimum horizontal compressive stresses (σH and σh), and the vertical stress (σv) of six wells were calculated according to the selected models of these stresses, respectively. The present-day in-situ stresses, determined by the proposed method in the paper, were verified by those obtained from acoustic emission tests and finite-element numerical simulations with the relative errors of less than 10%. The results show that the magnitudes of σH, σh and the horizontal differential stress (σH−h) in the study area mainly range from 32 to 43 MPa, 23 to 37 MPa and 5 to 8 MPa, respectively. The magnitude of the three-dimensional present-day in-situ stress increases with the increase of depth. The average gradients of σH, σv and σh are 0.018, 0.014 and 0.015 MPa/m, respectively, that is σHvh. In this stress state, the hydraulic fractures, with a trend of little expansion towards multiple directions, are commonly developed at a small angle intersecting with the direction of σH in the study area.

Funder

the Strategic Cooperation Technology Projects of CNPC and CUPB

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3