Water-bearing effect on mechanical properties and interface failure mode of coal–rock combination samples

Author:

Zhang Zhai-nan1,Chi Xiao-lou1,Yang Ke2ORCID,Lyu Xin1,Fu Qiang1,Wang Yu1

Affiliation:

1. Student State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, China

2. Institute of Energy, Hefei Comprehensive National Science Center, Hefei, China

Abstract

The coal and rock mass in water-rich mines with underground waterproof coal-and-rock pillars will be inevitably eroded by groundwater. The mechanical properties and interface failure mode of coal–rock mass under high-moisture conditions directly affect the mine stability and operation safety. This study performed uniaxial compression tests of samples from coal, rock, and their combination with different water contents, the evolution law of mechanical properties and acoustic emission (AE) damage characteristics of coal–rock combinations (C-RC) with different water contents were studied. The C-RC interface failure modes at different water contents were clarified. The results showed that the deterioration of average peak strength of coal, rock, and C-RC was obvious with increased water content. The deterioration degree in the descending order was as follows: C-RC > coal mass > rock mass. The maximum AE ringing number first increased rapidly and then sharply dropped, while the AE cumulative ringing number dropped slowly and then rapidly, reflecting the internal crack propagation patterns in C-RC. The failure mechanism of water-bearing C-RC was related to coal–rock strength ratio and the water-bearing effect of coal–rock interface. When the water-bearing state of C-RC changed from dry to saturated, the macro-failure mode showed the law of only coal fracture (0%)—minor fracture at the coal–rock interface (4%)—both coal and rock fracture (8%)—only coal fracture (12%). With increased water content, the water-bearing effect of C-RC interface gradually prevailed in the C-RC failure pattern.

Funder

the Major Special Projects of Science and Technology in Shanxi Province

the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3