Influence of low temperature tail water reinjection on seepage and heat transfer of carbonate reservoirs

Author:

Wang Yan123ORCID,Liu Yanguang13ORCID,Bian Kai2ORCID,Zhang Hong4,Wang Xiaojun4,Zhang Hongyun2,Wang Wanli13,Qin Shenjun2ORCID

Affiliation:

1. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China

2. Key Laboratory of Resource Exploration Research of Hebei Province, Hebei University of Engineering, Handan, China

3. Technology Innovation Center of Geothermal & Hot Dry Rock Exploration and Development, Ministry of Natural Resources, China

4. Hydrological Geological Team of Hebei Province Coal, Geology Bureau, Handan, China

Abstract

Seepage and heat transfer in the carbonate reservoir under low-temperature tail water reinjection is a complex coupling process, which is an important basis for scientific and reasonable evaluation of geothermal resource sustainability. This study based on the tracer test of double-well reinjection for carbonate heat reservoir, a coupling model of seepage field and temperature field of fracture network is established by using the finite element software COMSOL. The uncertainty analysis is carried out to study the fluid-thermal coupling process of carbonate fracture under the condition of low-temperature tail water reinjection.The variation law of seepage field and temperature field of thermal reservoir under low-temperature geothermal tail water reinjection is revealed, The variation of measured temperature of thermal reservoir pumping side under different reinjection conditions is predicted. The results show that the dominant fracture channels between wells of the fractured heat reservoir in Xian county geothermal field play an important role in controlling the seepage heat transfer. Under the coupling action of the seepage field, pressure field and the temperature field of the heat reservoir, the low-temperature tail water reinjection forms a preferential flow along the dominant channels, which is one of the important factors to consider in the prediction of thermal breakthrough. Reinjection pressure, temperature and well spacing are the main factors for artificial control of geothermal production and reinjection system. In the pumping and reinjection system of Xian county geothermal field, under the conditions of 0.5 MPa reinjection pressure, 30 °C reinjection tail water temperature and 270 m spacing between pumping and reinjection wells, the heat reservoir temperature at the pumping side decreased by 1.5 °C in 100 years.

Funder

The National Key R&D Program of China

Natural Science Foundation of Hebei province China

Geological survey project of China

Chinese Academy of Geological Sciences Hydro-geological Environment Geology Institute Fund

S&T Program of Hebei China

National key research and development programs

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3