Organic petrology, geochemistry, and hydrocarbon generation capacity of Permo–Carboniferous source rocks in the Mahu Sag, northwestern Junggar Basin, China

Author:

Qin Zhijun12,Zhi Dongming23,Xi Kelai2

Affiliation:

1. School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong, China

2. PetroChina Xinjiang Oilfield Company, Karamay, Xinjiang, China

3. PetroChina Tuha Oilfield Company, Hami, Xinjiang, China

Abstract

The Mahu Sag in the Junggar Basin, China, is a hydrocarbon-rich sag. Abundant hydrocarbon source rocks were developed in the late Paleozoic there across the Carboniferous–Permian boundary. However, studies of the source rocks have focused mainly on the lower Permian Fengcheng Formation. Here we compare the Fengcheng Formation with other Carboniferous rocks and those of the lower Permian Jiamuhe and middle Permian Lower-Wuerhe formations. Based on organic petrological and geochemical data, the organic matter precursors, sedimentary facies, and resource potential of these source rocks were investigated. The bio-precursors of Carboniferous, Jiamuhe, and Lower-Wuerhe Formations were dominantly estuarine higher plants, Nematothallus -higher plants, and spores, respectively. The bio-precursors of Fengcheng Formation were mainly bacteria and algae, and the organic matter is abundant, with a high hydrocarbon-generating capacity and significant shale oil potential. In contrast, the other three formations contain poor-quality source rocks, although the Lower-Wuerhe Formation has a higher organic matter abundance than the Jiamuhe Formation. The Carboniferous organic matter contains mainly type II kerogen, whereas the Jiamuhe and Lower-Wuerhe formations contain type III kerogen. The thermal maturities determined from Tmax values is larger than those indicated by biomarkers. The biomarkers show that the three studied formations contain a mixture of terrestrial higher plants and bacteria–algae, with the contribution of green algae being higher than that of bacteria in most samples. However, the ratio of algae to bacteria is lower than that of the Fengcheng Formation. The Fengcheng Formation was deposited in a strongly reducing, high-salinity, and water-stratified sedimentary environment. The other three formations were deposited in an oxidizing–reducing, low-salinity, and water-unstratified environment. They are characterized by the predominance of mudstone over carbonate rocks and the descending distribution type of tricyclic terpenes. Our results provide a basis for research on upper Paleozoic source rocks in western China, and useful information for oil and gas exploration in the Mahu Sag.

Funder

PetroChina Science and Technology Major Project

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3