Mechanical model and numerical simulation of the formation of karst collapse columns in the Huainan coalfield of Northern China

Author:

Zhang Haitao1ORCID,Xu Guangquan1,Zhang Yanxi2,Tang Ming3,Zhang Gang2,Liu Xiaoguo3

Affiliation:

1. School of Earth and Environment, Anhui University of Science and Technology, Huainan, China

2. Department of Geology and Hydrogeology, Xieqiao Coal Mine, Huainan Mining Group Co., Ltd., Huainan, China

3. Department of Geology and Hydrogeology, Zhangji Coal Mine, Huainan Mining Group Co., Ltd., Huainan, China

Abstract

Karst collapse columns (KCCs) are channels where groundwater and gas gather, and they pose a great threat to mining safety. In this study, a mechanical model and criterion for the roof collapse of KCCs were established, and simulations were performed to analyze the formation mechanism of KCCs in the Huainan coalfield of Northern China. The results showed that the roof collapse and upward development of KCCs were facilitated by increasing the cave radius of the KCC basement and decreasing the groundwater pressure, single-layer thickness of the roof strata, lateral pressure coefficient of the rock mass, and cohesion and internal friction angle between fractures. The KCC formation process in the Huainan coalfield could be divided into four stages: (I) early collapse, (II) middle-early rapid collapse, (III) middle-late slow collapse, and (IV) late filling compaction. The simulation results were generally consistent with actual KCCs observed in the Huainan coalfield, which verified the theoretical analysis. The results of this study provide an important reference for the formation mechanism and evolution of KCCs in Northern China.

Funder

National Natural Science Foundation of China

Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology, China

Natural Science Research Project of Higher Education Institutions of Anhui Province, China

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3